
Andreas Schmitz  2024-07-16

Next-Gen Django  
Background Workers
— Django Meetup Vol. 56 —

1

$ whoami
Andreas Schmitz

• Lead Software Development Engineer at …

• ✉ me@andreas.earth

• 🌍 www.andreas.earth

• … wirbauen.digital

• 🏗 Construction-Tech Startup

• 📍 Cologne, Germany

• 🚀 Trying to digitize the Construction Industry

2

mailto:me@andreas.earth
http://www.andreas.earth

A Common Problem
 Run long running tasks outside the request-response lifecycle.

3

Current Landscape
Background Workers

Solution: Install a third-party solution

• Celery

• Django Q or Django Q2

• Huey

• …

4

https://docs.celeryq.dev/en/stable/
https://django-q.readthedocs.io/en/latest/
https://django-q2.readthedocs.io/en/master/
https://github.com/coleifer/huey

Third-Party Solutions
Background Workers

The Problem

• Yet another dependency

• No common interface

• Hard to migrate from one to another

5

🙄

Background
Workers

DEP 0014

6

Yet Another Background Worker?

7

Source XKCD: https://xkcd.com/927

https://xkcd.com/927

Background Workers

8

Why another one?
A competing standard or a solution?

Project Goal

9

Interface and base implementation for
long-running background tasks shipped with Django.

Background Workers
Project Goal

• Common Interface

• "task backend" interface specification

• For Third-Party Libraries & Your Code

• Base Implementation

• ImmediateBackend — Run tasks immediately

• DatabaseBackend — Django ORM to store tasks

• DummyBackend — Don't execute, store in memory

10

Background Workers
Backend Interface

• Task backends must inherit from BaseTaskBackend

• Common interface between Django and the task runner

• Functions to determine if a backend can run a task

• e.g. if async is not supported

• Throws InvalidTaskError exception

• Project can have multiple backends and queues

11

Background Workers
Task Interface

• Generic Task class

• Actions the task runners execute

• No need to subclass

• Tasks are immutable

• Create a (reconfigured) copy of a task with "using"

12

Background Workers
Task Interface

13

from django.tasks import task

@task()

def calculate_meaning_of_life():

 return 42

• Can be function or coroutine

• Decorator parameters can overwrite defaults

• Task arguments must be JSON serializable

Background Workers
Tasks are normal functions

14

from django.tasks import task

@task()

def do_a_task(*args, **kwargs):

 pass

Calls `do_a_task` as if it weren't a task

do_a_task()

Background Workers
Queueing Tasks

15

from django.tasks import task

@task()

def add(a: int, b: int):

 return a + b

result = add.enqueue(31, b=11)

Background Workers
Queueing Tasks

16

from django.tasks import task

@task(priority=100, backend='other-backend', queue_name='high-load')

def calculate_meaning_of_life():

 return 42

• Manage multiple queues

• Select different backend

• Set priorities

Background Workers
Overwrite Defaults

17

from django.tasks import task

@task()

def calculate_meaning_of_life():

 return 42

calculate_meaning_of_life.using(

 priority=100,

 backend='other-backend',

 queue_name='high-load'

).enqueue()

Background Workers
Deferring Tasks

18

from django.tasks import task

@task()

def do_a_task():

 pass

do_a_task.using(run_after=timedelta(minutes=5)).enqueue()

Background Workers
Task Results

• Queueing a task returns a TaskResult object

• Caches the task's result (once available)

• Stores status of task

19

NEW The task has been created, but hasn't started running yet

RUNNING The task is currently running

FAILED The task failed

COMPLETE The task is complete, and the result is accessible

Background Workers
Database Background Worker

• Start worker with: python manage.py db_worker

• Executes queued tasks

• Can be configured to only execute specific queues

20

Background Workers
Out of Scope (for now)

• Completion hooks

• Bulk queuing

• Automated task retrying

• Generic task runner execution

• Custom backends need to implement their own runners

• Task Queue monitoring and reporting

• Cron-based scheduling

• Task timeouts

21

Background Workers
Disclaimer

• Work in Progress

• Not yet part of Django

• Reference implementation django-tasks is an early demo

• Breaking changes likely

• A lot of missing features

• See DEP for more infos

22

Demo
— Django Tasks in Action —

23

Django Tasks
Packages & Resources

• Django Enhancement Proposal 14: Background Workers

• Django Tasks

• Reference Implementation by Jake Howard

24

https://github.com/django/deps/blob/main/accepted/0014-background-workers.rst
https://github.com/RealOrangeOne/django-tasks
https://github.com/RealOrangeOne

Slides

25

andreas.earth/s/djmc-56

https://www.andreas.earth/s/djmc-56

